Earthquakes

What are Earthquakes?

- Ground shaking caused by the sudden release of energy in earth's crust.
- Associated with plate boundaries and active faults
- Continuing adjustment of position results in aftershocks

Where Do Earthquakes Occur?

3 types Faults

Transform - strike-slip
Convergent - reverse
Divergent - normal

Strike-Slip

- Medium quakes
- Shallow

Strike-Slip

San Andreas Fault in the Carrizo Plain near Wallace Creek

Reverse

- Strongest quakes
- Cause tsunamis
- Deep

Normal

- Small quakes
- Shallow

Seafloor spreading at a divergent margin

Effects of Earthquakes?

Tsunami of 2004

- Indonesia, Sri Lanka, India, and Thailand were the hardest hit.
- Magnitude of 9.1 or 9.3 (second largest earthquake in recorded history)
- Killed nearly 230,000 people in eleven countries
- Triggered other earthquakes as far away as Alaska

Figure 11.20

Copyright © 2008 Pearson Prentice Hall, Inc.

Copyright © 2008 Pearson Prentice Hall, Inc.

Copyright © 2008 Pearson Prentice Hall, Inc.

What are the waves?

- Waves are started because of initial tension or compression in the rock
- Path of waves are curved because different rock types at different depths change speed at which waves travel
- There are three different types of waves involved with Earthquakes

Three different types of waves

•P-waves •S-waves Surface waves

P-Waves

- One of the body waves
- Travel the fastest
- Travel through solids, liquids, and gases
- Motion: squeezing or stretching
- Because they are detected first, they are called the Primary waves

S-Waves

- The other body wave
- Travels the second fastest
- CANNOT travel through liquids
- Motion: rock back and forth (side to side)
- These travel slower than P-Waves and always arrive second, so these are called Secondary waves

Surface Waves

- Moves the ground in circles
- Motion: up and down
- Travels slower than body waves and only on the surface
- Most damage comes from these waves

The three types of waves

Difference in travel time for P and S waves tells us how far away the earthquake is from the recording station

Other uses of knowing the three waves

- Seismic velocity (how fast earthquake waves travel through rocks) depends on the composition of material and pressure.
- We can use the behavior of seismic waves to tell us about the interior of the Earth.

Focus of Earthquake

SURFACE WAVES

SPACE

UPPER MANTLE,

SURFACE

CRUST

NAVES OUTER CORE

MAVES

INNER CORE

LOWER MANTLE

Review

- Three types of waves
 - –P-Waves: primary and travel through anything
 - –S-Waves: secondary and cannot travel through liquids
 - –Surface Waves: last but does the damage and only travels on the surface of the Earth

Locating Earthquakes

- When did it happen?
 - Seismologists use seismograms to calculate when an earthquake started.

An Earthquake's Epicenter

Where did it start?

- A seismic station records the waves
- We can estimate the distance by measuring the time between P and S wave arrivals
- With three stations we can triangulate the location

Locating Earthquakes

- Epicenter: the point on the Earth's surface directly above an earthquake's starting point.
- Focus: point inside the Earth where an earthquake begins

Finding the Epicenter

Earthquake Magnitude

1. The Richter Scale

- Named after Charles Richter who developed the scale in the 1930s
- Has been modified since
- measures the amount of energy an earthquake releases
- Each number of magnitude is 10x stronger than the number below it.

Understanding the Richter Scale

Richter Magnitude	Feels like KG of TNT	Extra Information
0-1	0.6 -20 kilograms of dynamite	We can not feel these.
2	600 kilograms of dynamite	Smallest quake people can normally feel.
3	20,000 kilograms of dynamite	People near the epiœnter feel this quake.
4	60,000 kilograms of dynamite	This will cause damage around the epicenter. It is the same as a small fission bomb.
5	20,000,000 kilograms of dynamite	Damage done to weak buildings in the area of the epicenter.
6	60,000,000 kilograms of dynamite	Can cause great damage around the epicenter.
7	20 billion kilograms of dynamite	Creates enough energy to heat New York City for one year. Can be detected all over the world. Causes serious damage.
8	20 billion kilograms of dynamite	Causes death and major destruction. Destroyed San Francisco in 1906.
9	20 trillion kilograms of dynamite	Rare, but would causes unbelievable damage!

- 2. The Mercalli Scale
 - Measures the amount of damage from an earthquake
 - Ranges from I to XII
 - Based on common earthquake occurrences such as "noticeable by people" "damage to buildings" chimneys collapse"

The Mercalli Scale		
Earthquake Intensity	Earthquake Effects	
I–II	Almost unnoticeable	
III–IV	People notice vibrations like those from a passing truck. Unstable objects disturbed.	
V–VI	Dishes and windows rattle. Books knocked off shelves. Slight damage.	
VII–VIII	People run outdoors. Moderate to heavy damage.	
IXX	Buildings jolted off foundations or destroyed. Cracks appear in ground and landslides occur.	
XI–XII	Severe damage. Wide cracks appear in ground. Waves seen on ground surface.	

What contributes to a high earthquake hazard?

- 1. The level of shaking
 - Energy released from the earthquake
 - Distance from the earthquake
 - How the land is
- 2. Building design
- 3. Proximity to population centers
- 4. Saturation of soils
- 5. Aftershocks

Damage?

