Matter

What is matter?

- Matter is anything that has mass and takes up space.
- Matter is made up of atoms.

Is it matter?

Can you measure the object?
Does it take up space?
Does the object have a mass?

Come up with examples that are matter and are NOT matter with your shoulder partner.

QUICK VOCAB LESSON

Mass vs. Weight

- Matter is anything with mass which does NOT mean the same thing as weight.
- Mass is the amount of matter in an object.
- Weight is the amount of attraction between objects of matter.
 - Gravity anyone?

Density vs. Volume

- Density is the amount of matter in a given space.
 - How closely bound are the atoms?
- Volume is the amount of space an object takes up.

What is an atom?

- An atom is the smallest form of matter.
- Everything in the world is made up of atoms.
- Millions of atoms put together make up matter such as desks, pencils, keys, people, etc.
 - They are EXTREMELY small
 Average diameter is 0.00000003 cm

Inside an atom

Nucleus

 Made of positively charged protons and neutrally charged neutrons

Center of the atom

Contains most of the atom's mass

Small but dense

Atoms are 99% empty space because all the mass is in the nucleus.

Electrons Negatively charged Much smaller than protons and neutrons • 1, 800 electrons equal the mass of 1 proton Travel in a cloud outside the nucleus The size of the cloud determines the size of the atom

Electron Cloud

- There are seven different levels in which the electrons can move
- Each level has a certain number of electrons it can contain
- The level must be full before electrons can move to the next level

Cloud levels

Level 1: 2 electrons Level 2: 8 electrons Level 3: 18 electrons Level 4: 32 electrons Level 5: 50 electrons Level 6: 72 electrons Level 7: 98 electrons

An atom's charge

- Electrons negative charge
- Protons positive charge
- Neutrons no charge

Atoms have no charge, which means that there must be the same amount of protons and electrons to balance each other out.

An atom's mass

- AMU = Atomic Mass Unit
 - Mass of atoms is so small scientists came up with its own unit!
- Protons 1 AMU
- Neutrons 1 AMU
- Electrons 0.0018 AMU

HOW TO READ AN ELEMENT SQUARE

Atomic number

The number of protons in the nucleus

Atomic mass

The mass of the protons + neutrons

Math!!!!

- Number of protons = the atomic number
- Number of electrons = number of protons
- Number of neutrons = atomic mass atomic number

Time to practice!

 Find the number of protons, electrons and neutrons of this element

FYI

- Element's atomic number will never change. If there is a different atomic number, then you have a different element
- Atomic mass can vary from atom to atom of the same element because the number of neutrons can change

WHO CAME UP WITH ATOMS?

The short version

Democritus – 440 BC

- Greek philosopher.
- Proposed that all atoms are small, hard particles made of a single material formed into different shapes and sizes.
- Said that atoms are always moving and that they form different materials by joining together

Dalton - 1803

- Learned that elements combine in specific proportions based on mass to form compounds. Ex H₂O
- Proposed Atomic Theory to explain why this happened.

Dalton's Atomic Theory

- All substances are made of atoms. Atoms are small particles that cannot be created, divided, or destroyed.
- Atoms of the same element are exactly alike, and atoms of different elements are different.
- Atoms join with other atoms to make new substances.

This theory was very close but not quite right

J.J. Thomson - 1897

- Discovered that there are small particles inside the atom, thus atoms can be divided into even smaller parts.
- Experimented with cathode-ray tube and discovered electrons – negatively charged particles.

Thomson – Plum Pudding Model

Atoms have no overall charge, so positive charges must also be present Plum-Rudding Model of atom

The 'Plum Pudding' model of the atom. Negatively charged electrons (the plums) are embedded in a sphere of uniform positive charge (the pudding).

Ernest Rutherford established that atoms have nuclei.

Rutherford 1909

Rutherford

 Gold Foil experiment – aimed a beam of small, positively charged particles at a thin sheet of gold foil

Bohr - 1913

- Suggested that electrons travel around the nucleus in definite paths
- Paths are located in levels at certain distances from the nucleus
- Proposed that no paths are located between the levels, but electrons can jump from a path in 1 level to a path in another level.

Modern Theory 1925-1927

- Erwin Schrodinger and Werner Heisenberg
- Concluded that electrons do NOT travel in definite paths instead they are found in regions called electron clouds.

